

Circuit Diagrams

BA 9054
BA 9054/_ 2 _

Connection Terminals
Terminal designation Signal designation A1, A2 Auxiliary voltage i, k Current measuring input $11,12,14$ 1st changeover contact $21,22,24$ 2nd changeover contact

Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60 255, DIN VDE 0435-303, IEC/EN 60 947-1
- Monitoring of DC and AC
- With measuring ranges from 15 mV to 1000 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit - measuring ciruit
- Auxiliary supply AC/DC; BA 9054 with AC
- Optionally with start-up delay
- With time delay, up to max. 100 sec
- Optionally with safe separation to IEC/EN 61140
- As option with manual reset
- LED indicators for operation and contact position
- Width 45 mm

Approvals and Markings

Applications
Monitoring voltage in AC or DC systems

Function

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. The response delay t_{v} is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators

green upper LED:
yellow lower LED:
on, when auxiliary supply connected on, when output relay acitvated

Function Diagram without Start-up Delay

 M6782_f

Function Diagram with Start-up Delay

Version BA 9054/_1_: 2 changeover contacts

Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range $\geq 70 \ldots 700 \mathrm{~V}$

At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (e, f)

With 1 Measuring range for $A C$ a nd DC			
Measuring range ${ }^{1)}$		internal	max. permissible
AC	DC	resistance	contin. voltage
$6 \ldots 60 \mathrm{mV}$	$5.4 \ldots 54 \mathrm{mV}$	$20 \mathrm{k} \Omega$	10 V
$15 \ldots 150 \mathrm{mV}$	13.5 ... 135 mV	$40 \mathrm{k} \Omega$	100 V
$50 \ldots 500 \mathrm{mV}$	$45 . . .450 \mathrm{mV}$	$270 \mathrm{k} \Omega$	250 V
$0.5 \ldots 5 \mathrm{~V}$	0.45 ... 4.5 V	$500 \mathrm{k} \Omega$	300 V
$1 . .10 \mathrm{~V}$	0.9 ... 9.0 V	$1 \mathrm{M} \Omega$	300 V
5 ... 50 V	4.5 ... 45 V	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$25 . .250 \mathrm{~V}$	22.5 ... 225 V	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2}$
50 ... 500 V	45 ... 450 V	$2 \mathrm{M} \Omega$	$500 \mathrm{~V}^{2)}$
$70 . .700 \mathrm{~V}^{3}$	63 ... 630 V	$3 \mathrm{M} \Omega$	$700 \mathrm{~V}^{4}$
100 ... $1000 \mathrm{~V}^{3}$	90 ... 900 V	$3 \mathrm{M} \Omega$	$1000 \mathrm{~V}^{4}$

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{1}{3} \mathrm{~Hz}$ on request)
${ }^{2)}$ at Overvoltage category II: 600 V
${ }^{3)}$ only with BA 9054/_20; /_21; /_22; /_23; /_24
(Version: 1 changeover contact)
${ }^{4)}$ at overvoltage category II: 1000 V

Please note:

Measuring ranges 6 ... 60 mV only available at variant BA 9054/080 (Using only for current sensing via shunt!)

Measuring principle: Adjustment:

Temperature influence:

Setting Ranges

Setting

Response value:
Hysteresis
at AC:
at DC:

Accuracy:

Response value at
Potentiometer right stop (max): $0 \ldots .+8 \%$
Potentiometer left stop (min): $\quad-10 \ldots .+8 \%$
Adjustment by rotational potentiometer on the front panel of the device is not calibrated. For accurate adjustment it is necessary to use an external measuring instrument.

Repeat accuracy:

Recovery time

at devices with manual reset
(Reset by braking
of the auxiliary voltage)
BA 9054/6_ _ :

Time delay t_{v} :

Start-up delay t_{a} :

BA 9054/1 __:
arithmetic mean value
The AC-devices can also monitor DCvoltage. The scale offset in this case is ($\bar{U}=0.90 \mathrm{U}_{\text {eft }}$)
$<0.05 \% / K^{\text {enf }}$
infinite variable $0.1 U_{N} \ldots 1 U_{N}$ relative scale
infinite variable 0.5 ... 0.98 of setting value infinite variable $0.5 \ldots 0.96$ of setting value
≤ 1 s
(dependent to function and auxiliary voltage) infinite variable at logarythmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0$... 100 s setting $0 \mathrm{~s}=$ without time delay

1 ... 20 s; 1 ... 60 s; 1 ... 100 s, adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state

Technical Data

Auxiliary Circuit

Auxiliary voltage $\mathbf{U}_{\mathbf{H}}(\mathrm{A} 1, \mathrm{~A} 2)$
Nominal voltage:
Voltage range:
Nominal frequency:
Frequency range:
Nominal consumption:

AC 24, 42, 110, 127, 230, 400 V
$0.8 \ldots 1.1 U_{H}$
$50 / 60 \mathrm{~Hz}$
± 5 \%
2.5 VA

4 VA ; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	$\mathrm{AC} 18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz}$ DC $48 \% \mathrm{~W}$
	$\mathrm{DC} 18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	$\mathrm{AC} 40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz}$; DC $48 \% \mathrm{~W}$
	$\mathrm{DC} 40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
DC 12 V	$\mathrm{DC} 10 \ldots 18 \mathrm{~V}$	battery voltage

Output

Contacts:
Thermal current $I_{\text {th }}$:
Switching capacity
to AC 15:
NO contact:
NC contact:
to DC 13:
Electrical life
to AC 15 at 3 A, AC 230 V :
Short-circuit strength
max. fuse rating:
Mechanical life:
General Data
Operating mode: Continuous operation
Temperature range:
Storage
Climate class in accordance to IEC60721
(without condensation and icing):

Long term storage:	1K4
Transport:	1 K 3

Stationary use: 3K5
Mecanical stress in accordance to IEC60721.
$\begin{array}{ll}\text { Long term storage: } & 1 \mathrm{M} 3 \\ \text { Transport: } & 2 \mathrm{M} 2\end{array}$
Stationary use: 3M4
Clearance and creepage
distances
rated impulse voltage /
pollution degree: $6 \mathrm{kV} / 2 \quad$ IEC 60 664-1
EMC tested according to railway standard EN 50155
Electrostatic discharge
HF irradiation
80 MHz ... 1 GHz :
$1 \mathrm{GHz} \ldots 2.7 \mathrm{GHz}$:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground: Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection:
Wire fixing:
Mounting:
Weight
AC-device: $\quad 280 \mathrm{~g}$
AC/DC-device:
Dimensions

2 changeover contacts

 $2 \times 4 \mathrm{~A}$2 A / AC 230 V IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
1 A / DC 24 V
IEC/EN 60 947-5-1
IEC/EN 60 947-5-1
5×10^{5} switching cycles
6 AgL IEC/EN 60 947-5-1
50×10^{6} switching cycles
$40 \ldots+60^{\circ} \mathrm{C}$

K4
IEC 60 721-3-1
IEC 60 721-3-2
IEC 60 721-3-3
IEC 60 721-3-1
IEC 60 721-3-2
IEC 60 721-3-3 8 kV (air)

IEC/EN 61 000-4-2

$20 \mathrm{~V} / \mathrm{m}$

IEC/EN 61 000-4-3
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
4 kV IEC/EN 61 000-4-4

2 kV
IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
Limit value class B
EN 55011

IP 40	IEC/EN 60529
IP 20	IEC/EN 60529

Thermoplastic with V0 behaviour according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6 frequency $10 \ldots 55 \mathrm{~Hz}$
40 / 060 / 04
IEC/EN 60 068-1 EN 50005
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
Flat terminals with self-lifting
clamping piece IEC/EN 60 999-1
DIN-rail IEC/EN 60715

200 g

UL-Data

Auxiliary voltage $\mathbf{U}_{\mathrm{H}}(\mathbf{A} 1, \mathrm{~A} 2)$: $\quad \mathrm{AC} 24,42,48,110,115,120 \mathrm{~V}$
Thermal current I_{th} : $2 \times 5 \mathrm{~A}$
Clearance and
creepage distances: $4 \mathrm{kV} / 2$
IEC 60 664-1

HF irradiation
(80 MHz ... 2.7 GHz)
Switching capacity:
Ambient temperature:
$10 \mathrm{~V} / \mathrm{m}$
IEC/EN 61 000-4-3
Pilot duty B150
$-40 \ldots+60^{\circ} \mathrm{C}$

Technical data that is not stated in the UL-Data, can be found in the technical data section.

CCC-Data

Switching capacity
to AC 15:
to DC 13:
1.5 A / AC 230 V

IEC/EN 60 947-5-1
1 A / DC 24 V
IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

```
Standard Types
BA 9054/010 AC 25 ... 250 V AC 230 V
Article number:
- for Overcurrent monitoring
- Measuring range: AC 25 .. 250 V
- Auxiliary voltage }\mp@subsup{U}{H}{}\mathrm{ : AC 230 V
- Time delay tv by U Un. 0... 20 s
- Width:
45 mm
BA 9054/012 AC 25 .. 250 V AC 230 V
Article number:
- for Undercurrent monitoring
- Measuring range:
AC 25 ... 250 V
- Auxiliary voltage \(\mathrm{U}_{\mathrm{H}}\) :
- Time delay \(\mathrm{t}_{\mathrm{v}}\) by \(\mathrm{U}_{\mathrm{ab}}\) :
- Width:
AC 230 V
\(0 . . .20 \mathrm{~s}\)
45 mm
```


Accessories

AD 3:
Remote potentiometer 470 kW (article number 0050174)

Setting

Example:
Voltage relay BA 9054 AC 25 ... 250 V

AC according to type plate:
i.e. the unit is adjusted to AC voltage
$25 . .250 \mathrm{~V}=$ measuring range
Response value AC 150 V
Hysteresis AC 75 V
Settings:
upper potentiometer: $\quad 0.6 \quad(0.6 \times 250 \mathrm{~V}=150 \mathrm{~V})$
lower potentiometer: $\quad 0.5 \quad(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$
The AC-devices can also monitor DC current. The scale offset in this case is: $\overline{\mathrm{U}}=0.9 \times \mathrm{U}_{\text {eff. }}$

AC $25 \ldots 250 \mathrm{~V}$ is equivalent to $\mathrm{DC} 22.5 \ldots 225 \mathrm{~V}$
Response value DC 150 V
Hysteresis DC 75 V
Settings:
upper potentiometer: $\quad 0.66 \quad(0.66 \times 225 \mathrm{~V}=150 \mathrm{~V})$
lower potentiometer: $\quad 0.5 \quad(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

Ordering example for variants

Auxiliary voltage
Measuring range
With UL-approval

10 Overcurrent relay energized on trip time delay at setting value
11 Overcurrent relay de-energized on trip time delay at setting value
12 Undercurrent relay energized on trip time delay at hysteresis value
13 Undercurrent relay de-energized on trip time delay at hysteresis value
21 Same as BA 9054/011 but with measuring range
≥ 70... 700 V , $1 \mathrm{C} / \mathrm{O}$ contact
22 Same as BA 9054/012, but with measuring range
≥ 70... 700 V ,
$1 \mathrm{C} / \mathrm{O}$ contact
23 Same as BA 9054/013, but with measuring range
≥ 70... 700 V ,
$1 \mathrm{C} / \mathrm{O}$ contact
24 Same as BA 9054/010, but with measuring range ≥ 70... 700 V , $1 \mathrm{C} / \mathrm{O}$ contact

0 Standard version
1 With start up delay t_{a}
2 With safe electrical separation of input- and output circuit accroding to DIN 61140
Meas. range up to $\leq 10 \mathrm{~A}$:
DIN EN 60947-1; 4 kV/2
in relation of over-
voltage category III
with basic insulation
to DIN EN 60664-1
of 4 kV ;
Meas. range up to $\geq 15 \mathrm{~A}$:
overvoltage category II
with basic insulation
of 2.5 kV
3 With $5 \mu \mathrm{~m}$ gold plated contacts
5 With forcibly guided contacts
6 With manual reset, resetting by disconnecting the power supply

Characteristics

Switching delay

The characteristic shows the switching delay depending on the values of $X_{\text {on }}-X_{\text {off }}$ when switching the current on or off. A slow current change reduces the delay.
$\mathrm{F}=\frac{\mathrm{U} \text { applied }}{\mathrm{U} \text { setting }}$

Maintenance, repair and disposal

Maintenance and repairs

- The device contains no parts that require maintenance.
- In case of failure, do not open the device but send it to manufacturer for repair.

Regular checks

- In addition to the tests during set up, a functional test must be made in regular intervals(at minimum annually) and after all maintenance work.
- By use in room temperature we recommend an exchange of the module after 8 years

Disposal

- Unserviceable devices that cannot be repaired must be disposed in accordance with the relevant country-specific waste disposal regulations.

Product appearance

