

Options with plugable terminal blocks


LG $\qquad$


Terminal block with cage clamp terminals (PC / plugin cageclamp)


Terminal block with screw terminals (PS / plugin screw)

## Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.


- According to
- Performance Level (PL) e and category 4 to EN ISO 13849-1: 2008
- SIL Claimed Level (SIL CL) 3 to IEC/EN 62061
- Safety Integrity Level (SIL 3) to IEC/EN 61508
- Category 4 to EN 954-1
- Safety level Type III-C to EN 574
- Inputs for 2 push buttons with 1 NC and 1 NO contact
- Output: 3 NO contacts, 1 NC contact
- Feedback circuit Y1 - Y2 to monitor external contactors used for reinforcement of contacts
- Overvoltage and short circuit protection
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled, or $2 \times 2.5 \mathrm{~mm}^{2}$ solid DIN 46 228-1/-2/-3/-4
- as option with plugable terminal blocks for easy exchange of devices
- with screw terminals
- or with cage clamp terminals
- Width 22.5 mm


## Approvals and marking



## Applications

Designed for press controls in metalworking as well as in other working machines with dangerous closing movements.

## Indication

| LED power-supply: | on, when operating voltage applied |
| :--- | :--- |
| LED K1: | on, when relay K1 active |
| LED K2: | on, when relay K2 active |

## Function diagramm


1.) "S1, S2 activated" means, NC open and NO closed
2.) activated $S 1$, switches "+"-potential
3.) activated S2, switches "-"-potential

## Block diagram



## Circuit diagram



## Notes

If both buttons are pressed while switching on the operating voltage (e.g. after voltage failure) the output contacts do not energize.
The terminal S22 also serves as reference point for checking the control voltage.
On LG 5933 there is only one terminal S12 and S22.

## Set-up instructions

The device has to be connected as shown in the application examples. When connecting the push-buttons in parallel or in series the safe function of the relay is disabled. Connected contactors (relays) must have positive guided contacts and have to be monitored in the feedback circuit.
To start a dangerous movement, 2 push buttons are used, each equipped with 1 NO and 1 NC contact. The output contacts will be switched if both push buttons are operated within $\leq 0,5 \mathrm{~s}$. The buttons must be designed and installed in a way, that it is not possible to manipulate or to operate them without intention.
The distance between push buttons and dangerous area must be chosen in a way that it is not possible to reach the dangerous area after release of one button before the dangerous movement comes to standstill.

The safety distance " $s$ " is calculated with the following formula:
$s=v x t+C$
a) moving speed of person $v=1600 \mathrm{~mm} / \mathrm{s}$
b) stopping time of the machine $t$ (s)
c) Additional safety distance $\mathrm{C}=250 \mathrm{~mm}$

If the risc of accessing the dangerous area is prohibited while the push buttons are pressed e.g. by covering the buttons, $C$ can be 0 . The minimum distance has to be in this case 100 mm . See also EN 574.

## Technical Data

## Input

Nominal voltage $\mathrm{U}_{\mathrm{N}}$ :
Voltage range
at $10 \%$ residual ripple:
Nominal consumption:
Nominal frequency:
Delay time for simultaneity demand:
Recovery time:
Control contacts:
Current via control contacts
with DC 24 V :
NO contact:
NC contact:
Fuse protection:
Overvoltage protection:

AC 24 V , DC 24 V
AC / DC $0.9 \ldots 1,1 U_{N}$
AC approx. 4 VA
DC approx. 2.3 W
50 / 60 Hz
max. 0.5 s
1 s
$2 \times(1 \mathrm{NO}, 1$ NC contacts)

## Output

## Contacts:

## Operate time:

Release time:
Contact type:
Nominal output voltage:
Switching of low loads:
(contacts with $5 \mu \mathrm{Au}$ )
Thermal current $I_{\text {th }}$ :
Switching capacity
to AC 15:
NO contacts:
NC contacts:
to DC 13
NO contacts:
NC contacts:
Electrical contact life
at $5 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \cos \varphi=1$ :
according to DC 13
NO contacts
2 contacts in series:
to AC 15 to $2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$ :

## Permissible switching

capacity:
Short circuit strength max. fuse rating: Line circuit breaker: Mechanical life:

3 NO, 1 NC contacts
The NO contacts are safety contacts.
ATTENTION! The NC contact 41-42
can only be used for monitoring.
typ. 30 ms
typ. 25 ms
relay, positively driven
AC 250 V
DC: see continuous current limit curve
$\geq 100 \mathrm{mV}$
$\geq 1 \mathrm{~mA}$
see continuous current limit curve
(max. 5 A in a contact)
AC 3 A / 230
IEC/EN 60 947-5-1
AC 2 A / 230 V
IEC/EN 60 947-5-1
4 A / 24 V
$0.5 / 110 \mathrm{~V}$
IEC/EN 60 947-5-1
4 A / 24 V
IEC/EN 60 947-5-1
$>1.5 \times 10^{5}$ switching cycles
$8 \mathrm{~A} / 24 \mathrm{~V}>25 \times 10^{3}$
On: 0.4 s, Off: 9.6 s
$1.5 \times 10^{5}$ switching cycles

IEC/EN 60 947-5-1
max. 1800 switching cycles / h
10 A gL
IEC/EN 60 947-5-1
B 6 A
$10 \times 10^{6}$ switching cycles

## General Data

## Nominal operating mode:

## Temperature range

ioperation:
storage :
altitude:
Clearance and creepage

## distances

rated impuls voltage /
pollution degree:
EMC
Electrostatic discharge:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression
continuous operation
$-15 \ldots+55^{\circ} \mathrm{C}$
$-25 \ldots+85^{\circ} \mathrm{C}$
< 2.000 m

4 kV / 2 (basis insulation) IEC 60 664-1

8 kV (air)
2 kV
IEC/EN 61 000-4-2
IEC/EN 61 000-4-4

1 kV
2 kV
10 V
Limit value class B

IEC/EN 61 000-4-5
IEC/EN 61 000-4-5
IEC/EN 61 000-4-6
EN 55011

## Technical Data

Degree of protection
Housing:
Terminals:
Housing:

Vibration resistance:

## Climate resistance: <br> Terminal designation:

Wire connection
Screw terminals (integrated):

Insulation of wires
or sleeve length:
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplast with V0 behaviour according to UL subject 94
Amplitude 0.35 mm ,
frequency 10 ... 55 Hz IEC/EN 60 068-2-6 15/055/04 IEC/EN 60 068-1 EN 50005
DIN 46 228-1/-2/-3/-4
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 2.5 \mathrm{~mm}^{2}$ solid

Plugin with screw terminals
max. cross section for connection:

Insulation of wires or sleeve length:
Plugin with cage clamp terminals max. cross section for connection:
min. cross section for connection: Insulation of wires or sleeve length:
Wire fixing:

## Mounting:

Weight:
Dimensions
Width x height x depth
LG 5933:
$22.5 \times 90 \times 121 \mathrm{~mm}$
LG 5933 PC:
LG 5933 PS:

## Safety related data

Values according to EN ISO 13849-1:
Category:
PL:

| MTTF $_{\mathrm{d}}:$ | 30,7 | a |
| :--- | :--- | :--- |
| DC $_{\text {avg }}:$ | 99,0 | $\%$ |
| $\mathrm{~d}_{\text {op }}:$ | 220 | d/a (days/year) |
| $\mathrm{h}_{\text {op }}:$ | 12 | h/d (hours/day) |
| $\mathrm{t}_{\text {zykus }}:$ | $1,40 \mathrm{E}+02$ | s/Zyklus |

Values according to IEC/EN 62061 / IEC/EN 61508:

| SIL CL: | 3 | IEC/EN 62061 |
| :--- | :--- | :--- |
| SIL | 3 | IEC/EN 61508 |
| HFT $^{*}:$ | 1 |  |
| DC $_{\text {avg }}:$ | 99,0 | $\%$ |
| SFF $^{\text {: }}:$ | 99,7 | $\%$ |
| PFH $_{D}:$ | $7,51 \mathrm{E}-09$ | $h^{-1}$ |

*) HFT = Hardware-Failure Toleranz

nfoThe values stated above are valid for the standard type. Safety data for other variants are available on request. The safety relevant data of the complete system has to be determined by the manufacturer of the system.

## Standard type

LG 5933.48 DC 24 V

Article number:

- Output:
- Nominal voltage $\mathrm{U}_{\mathrm{N}}$ :
- Width:

004958247
3 NO contacts, 1 NC contact
DC 24 V
22.5 mm

## Ordering example



## Characteristics


safe breaking, no continuous arcing, max. 1 switching cycle/s

Arc limit curve under resistive load

$\Sigma \mid=1^{2}+1^{2}+1^{2}$
M9160
$\Sigma I=I_{1}^{2}+I_{2}^{2}+I_{3}^{2}$
$I_{1} ; I_{2} ; I_{3}$ Current via contact paths
max. current via 3 contact rows at $T u=55^{\circ} \mathrm{C}$

$$
3 \times 2,25 \mathrm{~A} \xlongequal{ }=2,25^{2}+2,25^{2}+2,25^{2}=15,2 \mathrm{~A}^{2}
$$

Total current limit curve

## Application examples



Two-hand control


Two-hand control with contact reinforcement via external positively-driven contactors. When switching inductive loads spark absorbers are recommended.

